Четверг, 23.05.2019, 22:21
Приветствую Вас Гость | RSS
История царствования Николая I
в лицах и биографиях
Меню сайта
Поиск
Статистика

Онлайн всего: 1
Гостей: 1
Пользователей: 0

Каталог статей

Главная » Статьи » Лобачевский ч.2

Неэвклидова геометрия - 7
Лобачевский изменил само понимание параллельных линий. У Эвклида непересекающиеся и параллельные — одно и то же, у Лобачевского: из всех, не пересекающих данную прямую АВ (см. чертеж), лишь две прямые называются параллельными — это K1РK и LPL1. Все остальные, находящиеся в пучке между параллельными, таковыми не считаются (в современной литературе их называют сверхпараллельными).
Поэтому постулат уточняется: если дана прямая АВ и не лежащая на ней точка Р, то через точку Р в плоскости АВР можно провести две прямые, параллельные данной прямой АВ.
Параллельными Лобачевский, следовательно, называет такие, которые отделяют непересекающие от пересекающих данную прямую АВ.
Расстояние между прямой АВ и каждой из параллельных не остается постоянным — уменьшается в сторону параллелизма и увеличивается в противоположную сторону. Параллельные прямые могут близко подойти друг к другу, но они не могут пересечься.
Плоскость, в которой существуют такие параллельные, принято называть плоскостью Лобачевского. Эта плоскость вовсе не «плоская» в эвклидовом смысле.
В эвклидовой плоскости угол параллельности неизменен и всегда равен 90°; в геометрии Лобачевского он может принимать все значения — от 0 до 90°. Следовательно, эвклидова геометрия есть частный (предельный) случай геометрии Лобачевского, в которой угол параллельности переменный.
Геометрически величина угла параллельности зависит от длины X перпендикуляра РЕ; то есть если перпендикуляр уменьшается, угол параллельности увеличивается, постепенно приближаясь к 90°.
Другими словами: когда точка Р стремится к совпадению с точкой Е, то есть когда X стремится к нулю, тогда угол параллельности стремится к 90°.
Таким образом, в новой геометрии существует взаимозависимость угла и отрезка. Когда угол параллельности прямой, то есть равен 90°, взаимозависимость исчезает. В эвклидовой геометрии ее нет. В неэвклидовой она представляет наиболее значительный момент.
Из этой взаимозависимости выводится основная формула всей геометрии Лобачевского.
В формулу Лобачевский вводит так называемую линейную константу. В современной науке под линейной константой понимают радиус кривизны пространства Лобачевского; величина константы зависит от конкретных физических условий в данной части мирового пространства. Исключительно большая величина константы свидетельствует о том, что наше пространство обладает огромным радиусом кривизны и, следовательно, довольно малой, близкой к нулю, кривизной, то ecть пространство в нашей части вселенной имеет плоский, эвклидов характер.
Но если допустить, что линейная константа может иметь разные значения, то каждому из подобных значений будет соответствовать своя, особая геометрия. Следовательно, может иметь место безграничное количество разных геометрий. Для Канта пространство — неизменная сущность; для Лобачевского — оно форма существования материи. Пространство способно изменяться вместе с материей.
Да, да, Лобачевский сотворил странную геометрию. Тут нет подобных фигур; сумма углов треугольника всегда меньше двух прямых, причем по мере увеличения треугольника она стремится к нулю. Попробуйте представить себе треугольник, сумма углов которого равна ничему! А треугольников сколь угодно большой площади в этой удивительной геометрии вообще не может быть. Тут существует прямая зависимость между углами и длиной сторон треугольника, чего нет в эвклидовой. Тут отсутствуют прямоугольники. Иными являются и соотношения для окружности.
Категория: Лобачевский ч.2 | Добавил: defaultNick (24.12.2013)
Просмотров: 911 | Рейтинг: 5.0/3
Всего комментариев: 0
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]
Яндекс.Метрика

Copyright MyCorp © 2019
Сделать бесплатный сайт с uCoz