Понедельник, 12.11.2018, 20:38
Приветствую Вас Гость | RSS
История царствования Николая I
в лицах и биографиях
Меню сайта
Поиск
Статистика

Онлайн всего: 1
Гостей: 1
Пользователей: 0

Каталог статей

Главная » Статьи » Лобачевский ч.2

Неэвклидова геометрия - 6
Присутствовавшие на заседании профессора слушали докладчика невнимательно. Их больше занимала история падения Магницкого. Каждый дрожал за свое местечко, с тревогой ожидал вызова к грозному Желтухину и язвительному Солнцеву. Даже Никольский чувствовал себя причастным к декабрьскому восстанию и побаивался ареста, ссылки. Много курили. Всем казалось странным, нелепым, что в такое зыбкое, суматошное время можно еще заниматься какими-то постулатами и теоремами, создавать новую геометрию, когда и старая-то может не пригодиться.
— За прегрешения наши… — бормотал Никольский и опасливо косился на Николая Ивановича.
В облике Лобачевского ему сейчас чудилось нечто сатанинское. Вот Николай Иванович остановился у доски, какая-то чужая, нездешняя улыбка пробрела по его губам. Свел острые изогнутые брови, надвинул шапку темно-русых волос почти на глаза, наклонил голову. Стоит, заслонив спиной чертеж, и, окидывая всех угрюмо-задумчивым взглядом, говорит:
— …Главное заключение, к которому пришел я с предположением зависимости линий от углов, допускает существование геометрии более в обширном смысле, нежели как ее представил нам первый Эвклид. В этом пространном виде дал я науке название Воображаемой Геометрии, где как частный случай входит употребительная геометрия с тем ограничением в общем положении, какого требуют измерения в самом деле…
В чем же сущность, сокровенный смысл открытой Лобачевским неэвклидовой геометрии?
Почему великий геометр назвал ее Воображаемой?
Почему эвклидова геометрия является частным — вернее, предельным — случаем геометрии Лобачевского?
Реальна ли геометрия Лобачевского в смысле соответствия физическому пространству, существует ли поверхность, на которой справедлива новая геометрия, или же она бесполезный плод фантазии, досужий вымысел, игра воображения, формальное доказательство независимости пятого постулата от других эвклидовых аксиом? Какая из двух геометрий с большей точностью описывает реальный мир?
Шаг за шагом мы проследили, как Лобачевский подходил к открытию новой геометрии, проследили в той мере, в какой возможно рассказать о сокровенной, тончайшей работе гениального ума, где из хаоса мимолетных наблюдений на основе опыта и интуиции рождается небывалая истина, постепенно выкристаллизовывающаяся в виде четкой формулы.
Первое значительное открытие Лобачевского состояло в доказательстве независимости пятого постулата геометрии Эвклида от других положений этой геометрии.
Вторым открытием была уже сама логически непротиворечивая система новой геометрии. На свою геометрию он смотрел именно как на теорию, а не как на гипотезу.
Придя к логическому заключению, что в мировом пространстве, а возможно и в микрокосме, сумма углов треугольника должна быть меньше двух прямых, Лобачевский смело выдвинул свою исходную аксиому, свой постулат и построил необычную геометрию, так же, как и эвклидова, лишенную внутренних противоречий. Воображаемой назвал не потому, что считал ее формальным построением, а потому, что она пока оставалась доступной лишь воображению, а не опыту. Его не покидала мысль вновь вернуться к измерению космических треугольников и установить истину.
Ничего не меняя в «абсолютной» геометрии, он лишь заменил пятый постулат антипостулатом, антиэвклидовой аксиомой: через указанную точку можно провести множество прямых, не пересекающих данную.
Категория: Лобачевский ч.2 | Добавил: defaultNick (24.12.2013)
Просмотров: 579 | Рейтинг: 5.0/2
Всего комментариев: 0
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]
Яндекс.Метрика

Copyright MyCorp © 2018
Сделать бесплатный сайт с uCoz