Пятница, 20.04.2018, 01:56
Приветствую Вас Гость | RSS
История царствования Николая I
в лицах и биографиях
Меню сайта
Поиск
Статистика

Онлайн всего: 1
Гостей: 1
Пользователей: 0

Каталог статей

Главная » Статьи » Лобачевский ч.1

Война великая и война ничтожеств - 8
Постулаты и аксиомы составляют в совокупности систему аксиом Эвклида. «Начала», состоящие из тринадцати книг, всегда поражали математиков силой логической концепции, во все века признавались самым незыблемым творением научной мысли, казались безупречными. Английский геометр Де Морган писал по этому поводу: «Никогда не было системы геометрии, которая в существенных чертах отличалась бы от плана Эвклида; и до тех пор, пока я этого не увижу собственными глазами, я не поверю, что такая система может существовать». Эвклид строго разделил положения геометрии на доказываемые и недоказываемые и выделил пять постулатов, которые, по его мнению, являются недоказуемыми, но исходя из которых можно доказать все остальные положения геометрии.
 
Но во всей этой логически стройной, казалось бы, безупречной системе имелась закавыка, лишавшая математиков покоя на протяжении двадцати веков, — постулат о параллельных линиях.
 
Этот постулат стоит в «Началах» Эвклида как-го особняком. Сформулирован он тяжеловесно, невнятно, сложнее, чем остальные. Его называли «странным», «загадочным». Будто кто-то с другой планеты или же с мифической Атлантиды, более умудренный, знающий нечто неведомое древним грекам, продиктовал аксиому великому геометру, а Эвклид остановился перед ней в недоумении, но, поразмыслив, все-таки внес в свои «Начала», глубоко, однако, сомневаясь в том, является ли пятый постулат в самом деле постулатом или он — доказуемая теорема. Ведь «Начала» — результат труда не столько самого Эвклида, сколько его предшественников. Эвклид привел в стройную систему все то, что существовало до него, поднял огромный пласт греческой геометрии.
 
Пятый постулат Эвклида в «Началах» сформулирован так: «И если прямая, падающая на две прямые, образует внутренние и по одну сторону углы, меньше двух прямых, — то продолженные эти две прямые неограниченно встретятся с той стороны, где углы меньше двух прямых».
 
Этот постулат лежит в основе учения о параллельных прямых. Параллельными называются прямые, лежащие в одной плоскости и не пересекающиеся, как далеко бы мы их ни продолжали.
 
Приняв пятый постулат за непогрешимую истину, за аксиому, можно доказать, что к прямой через точку, лежащую вне ее, всегда можно провести одну, и только одну, параллельную.
 
Но является ли пятый постулат аксиомой — истиной, не требующей доказательств? И в самом ли деле через точку, взятую вне прямой, можно провести лишь одну-единственную параллельную этой прямой? Казалось бы, стоит лишь взглянуть на чертеж — и все ясно. Однако геометрия — наука строгая, она мало верит наглядности, непосредственному впечатлению, зрительным ощущениям. Чертеж — всего-навсего иллюстрация, а не способ доказательства.
 
Есть в «Началах» аксиомы, настолько очевидные, что они в самом деле не вызывают никаких сомнений, например: «целое больше части», «через всякие две различные точки проходит одна, и только одна, прямая», «равные порознь третьему, равны между собой». Пятый постулат лишен подобной очевидности. Еще древним грекам казалось, что положение о параллельных есть теорема, а не аксиома, и ее следует доказать на основе других аксиом и постулатов. Решили, что пятый постулат попал в число аксиом не потому, что его нельзя доказать, а лишь потому, что сам Эвклид не смог найти доказательства. Он оставил эту работу другим математикам.
 
Нужно раз навсегда определить, что же такое пятый постулат, является ли он логически необходимым следствием остальных. Это следует сделать хотя бы потому, что пятый постулат занимает особое место в геометрии, он как бы делит ее на две части: на «абсолютную» геометрию, которая в своих доказательствах легко обходится без пятого постулата — ей он просто не нужен, и на «собственно эвклидову», где пятый постулат является основой основ, на нем держатся многие теоремы. Не только теория параллельных, но и тригонометрия, подобие фигур и т. д. Пятый постулат — это фундамент. А фундамент должен быть прочным.
 
И вот на протяжении двадцати веков математики пытаются перевести пятый постулат из разряда недоказуемых аксиом в разряд доказанных теорем. Эти усилия напоминают бег по кругу с завязанными глазами.

 

 

Категория: Лобачевский ч.1 | Добавил: defaultNick (24.12.2013)
Просмотров: 629 | Рейтинг: 5.0/4
Всего комментариев: 0
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]
Яндекс.Метрика

Copyright MyCorp © 2018
Сделать бесплатный сайт с uCoz